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Figure 1: A system of masses coupled by springs, intended to
call to mind an enormous and highly varied population of “classical
molecules and crystals.”

Introduction. When presented with physical systems such as those illustrated
in Figures 1,2 & 3 a physicist thinks “normal modes.” My purpose here
today will be to explore some aspects of this well-studied theory that remain
relatively little known. The points that will emerge seem to me to be of interest
both mathematically and physically. Some of them will call into question the
very meaning of the normal mode concept.

‡ Notes for a Reed College Physics Seminar presented 2 November 2005.



2 Abnormal modes

1. Setting up the problem. Look to the system illustrated below. From the
Lagrangian

L = 1
2

{
m1ẋ

2
1 + m2ẋ

2
2

}
− 1

2

{
k1x

2
1 + K(x2 − x1)

2 + k2x
2
2

}
we obtain the coupled equations of motion

m1ẍ1 + k1x1 − K(x2 − x1) = 0
m2ẍ2 + k2x2 + K(x2 − x1) = 0

k1 m1 K m2 k2

x1 x2

Figure 2: A simple system of coupled oscillators

In matrix notation
L = 1

2 ẋxxT
M ẋxx − 1

2xxxT
Kxxx (1)

where M and K are the real symmetric matrices

M =
(

m1 0
0 m2

)
and K =

(
k1 + K − K

− K k2 + K

)

In this notation the equations of motion become

M ẍxx + Kxxx = 000 (2)

Here it is the off-diagonal elements of K that serve to couple the equations
of motion. Had we been working from Figure 3 we would have had

L1q̈1 + Mq̈2 + C1
–1q1 = 0

L2q̈2 + Mq̈1 + C2
–1q2 = 0

which can be cast in the form (2) with

M =
(

L1 M
M L2

)
and K =

(
C1

–1 0
0 C2

–1

)
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C1 L1 L2 C2

M

Figure 3: Electrical analog of the mechanical system shown in the
first figure. It is established in the text that the analogy is not quite
perfect.

Notice that it is the off-diagonal elements not of K but of M—the coefficients
of mutual inductance—that serve to couple the circuit equations. So (small
point!) the so-called “electro-mechanical analogy” is in this respect (also in
another, as will emerge) not quite perfect.

Thus is our initial attention directed to n-variable systems of the type

L = 1
2 ẋxxT

M ẋxx − 1
2xxxT

Kxxx (1)

and to differential equations of motion of the coupled linear form

M ẍxx + Kxxx = 000 (2)

Note the equations themselves provide no indication of whether (in—say—the
case n = 6) we have in mind
• the motion of one particle in 6-space;
• the motion of two particles in 3-space;
• the motion of three particles in 2-space;
• the motion of six particles in 1-space.

Note also that if we take (1) as our point of departure then the symmetery of
M and K can be assumed witout loss of generality, but if we proceed from (2)
then symmetry must be explicitly stipulated (in its absence we are dealing with
a system that lies beyond the reach of the Lagrangian formalism). Symmetry
forces the eigenvalues {m1, m2, . . . , mn} and {k1, k2, . . . , kn} of the real matrices
M and K to be real. The energy of such a system is given by

E = 1
2 ẋxxT

M ẋxx + 1
2xxxT

Kxxx

and from the invariable non-negativity of energy1 it follows that all eigenvalues
are positive; i.e., that the matrices M and K are positive-definite.

The problem of solving equations (2) can be approached in several ways:

1 Obvious for mechanical systems, this holds also for their electrical analogs.
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2. Solution of the equations of motion “by Ansztz.” Let us exercise our option—
made available by the facts that (i) M and K are real and (ii) the equations
of motion are linear—to construe xxx to be the real part of a complex variable
zzz = xxx + iyyy. Assume that the variables zi move in harmonic synchrony:

ansatz: zzz(t) = ZZZeiωt

Equation (2) then supplies (
K − ω2

M
)
ZZZ = 000

From det
(
K − ω2

M
)

= 0 we obtain roots {ω2
1 , ω2

2 , . . . , ω2
n} and by command

NullSpace[K − ω2
j M ]

we obtain linearly independent vectors {ZZZ1,ZZZ2, . . . ,ZZZn}, each of which is (by
the reality of K − ω2

j M ) proportional to a real vector:

ZZZj = Aje
iδj ·XXXj

Thus are we led to solutions

xxx(t) = real part of
{

eiω1tZZZ1 + eiω2tZZZ2 + · · · + eiωntZZZn

}
= A1 cos(ω1t + δ1)XXX1 + A2 cos(ω2t + δ2)XXX2 + · · · + An cos(ωnt + δn)XXXn

where the {A1, δ1, A2, δ2, . . . , An, δn} might be chosen to achieve conformity
with prescribed initial data {xxx(0), ẋxx(0)}.

EXAMPLE: Look to the case

M =
(

2 1
1 3

)
, K =

(
3 2
2 7

)

—both of which are obviously real/symmetric and demonstrably
positive-definite. From det

(
K − ω2

M
)

= 0 we obtain

ω1 = ±1.53566
ω2 = ±1.20073

NullSpace commands now give

ZZZ1 =
(
−0.20871

1

)
and ZZZ2 =

(
−4.79129

1

)

which are obviously real and demonstrably M-orthogonal. After
M-normalization those vectors become

XXX1 =
(
−0.127737

0.612025

)
, XXX2 =

(
−0.763992

0.159454

)
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which are M-orthonormal:

XXXi
T
MXXXj = δij

By calculation we confirm that

zzz1(t) = eiω1tXXX1 and zzz2(t) = eiω2tXXX2

are indeed solutions of M z̈zz + K zzz = 000. Writing

xxx(t) = (a1 cos ω1t + b1 sinω1t)XXX1 + (a2 cos ω2t + b2 sinω2t)XXX2

we find that imposition of the initial conditions

xxx(0) =
(

1
0

)
, ẋxx(0) =

(
0
1

)

requires that we set

a1 = 0.35655, b1 = 1.11244, a2 = −1.36853, b2 = −0.23788

Graphs derived from the resulting xxx(t) are shown below:

Figure 4: Graph of xxx(t), interpreted as a reference to the motion
x1(t) and x2(t) of two points in one dimension.
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Figure 5: Exactly the same information as was presented in the
preceding figure, displayed here as though it referred to the motion
of a single point in 2-space.

Figure 6: In the preceding pair of figures t ran from 0 to 41. Here
it runs from 0 to 250. Closure requires that ω1/ω2 be rational.

3. Solution by simultaneous diagonalization. Established properties of M assure
that it can always be developed

M = R
T

⎛
⎜⎜⎝

m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...
0 0 . . . mn

⎞
⎟⎟⎠ R
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where R is a rotation matrix and {m1, m2, . . . , mn} are the eigenvalues of M

(which, as previously remarked, are positive for a physical reason). It follows
that we can write

M = N
T
N with N =

⎛
⎜⎜⎜⎝

√
m1 0 . . . 0
0

√
m2 . . . 0

...
...

. . .
...

0 0 . . .
√

mn

⎞
⎟⎟⎟⎠ R (3)

The Lagrangian (1) can therefore be rendered

L = 1
2 ẋxxT

N
T
N ẋxx − 1

2xxxT
N

TΩ|| 2 Nxxx

= 1
2 ẏyy T

I ẏyy − 1
2 yyy TΩ|| 2yyy (4)

where yyy = Nxxx and Ω|| 2 is the positive-definite real symmetric matrix defined

Ω|| 2 = (N T)–1
K (N)–1 (5)

The equations of motion have now become

ÿyy + Ω|| 2yyy = 000 (6)

Proceeding now as before,we look for solutions of the harmonically synchronized
form

yyy(t) = real part of nnneiωt

Equation (6) then assumes the classic form

(
Ω|| 2 − ω2

I
)
nnn = 000 (7)

We write {ω2
1 , ω2

2 , . . . , ω2
n} to describe the spectrum of Ω|| 2, the eigenvectors of

which are (if the spectrum is nondegenerate) automatically orthogonal, and can
be assumed to have been normalized:

nnnT
i nnnj = δij (8)

It is this circumstance that permits one to speak of normal modes of harmonic
motion. “Modal coordinates” yyy stand to “physical coordinates” xxx in the relation

yyy = Nxxx

Introducing nnni = NXXXi into the orthogonormality statement (8) we recover the
M-orthonormality relations XXXi

T
MXXXj = δij familar form page 5.
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EXAMPLE REVISITED: SingularValueDecomposition[M ]supplies

M = R
T

(
3.618 0

0 1.382

)
R : R =

(
0.526 0.851

−0.851 0.526

)

whence

N =
(

1 1.618
−1 0.618

)
We use this information to compute

Ω|| 2 = (N T)–1
K (N)–1 =

(
2.124 0.400
0.400 1.676

)

the eigenvalues of which are found to be precisely the squares of the
ωi to which wewere led already on page 4:

Ω|| 2 spectrum is {ω2
1 , ω2

2}, with
{

ω1 = ±1.53566
ω2 = ±1.20073

and (normalized) eigenvectors

nnn1 =
(

0.86254
0.50599

)
= NXXX1, nnn2 =

(
−0.50599

0.86254

)
= NXXX2

So we know exactly what we mean when we write

yyy(t) = (a1 cos ω1t + b1 sinω1t)nnn1 + (a2 cos ω2t + b2 sinω2t)nnn2

Which is exactly the result to which we would have been led had
we multiplied N into

xxx(t) = (a1 cos ω1t + b1 sinω1t)XXX1 + (a2 cos ω2t + b2 sinω2t)XXX2

The following figure presents a graph of the yyy(t) that results from
imposition of the transformed initial conditions

yyy(0) = N

(
1
0

)
, ẏyy(0) = N

(
0
1

)

It is instructive/useful to carry the preceding discussion one
step further. The SVD of the positive-definite real symmetric matrix
Ω|| 2 supplies information that can be displayed this way:

S
TΩ|| 2S =

(
ω2

1 0
0 ω2

2

)

where S is a rotation matrix assembled from the eigenvectors of Ω|| 2:

S =
(

0.86254 −0.50599
0.50599 0.86254

)
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Figure 7: Same motion as was shown in Figure 5, but displayed
here in reference not to the “natural” xxx-coordinate system but in
reference to the “normal” yyy-coordinate system. Note that the graph
has been “rectified” but remains rotated with respect to the coordinate
axes.

The implication is that if we write

yyy = S ŷyy

then the Lagrangian (4) assumes the form

L = 1
2 ŷyyT

(
1 0
0 1

)
ŷyy − 1

2 ŷyy T

(
ω2

1 0
0 ω2

2

)
ŷyy

and the equations of motion have become decoupled

¨̂yi + ω2
i ŷi = 0 : i = 1, 2

with consequences that are illustrated in Figure 8.

I understand decoupled motion to be the signature attribute of the modal
concept . To recapitulate how it was achieved in the example: the initial
Lagrangian was assembled from a pair of quadratic forms:

L = 1
2 ẋxxT

M ẋxx − 1
2xxxT

Kxxx
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Figure 8: Same motion as was shown in Figure 7, but displayed
here in reference ŷyy-coordinate system. The design reflects the fact
that ŷ1 and ŷ2 oscillate independently.

The linear transformation xxx �−→ yyy = Nxxx (rotation, followed by a dilation)
brought L to the form

L = 1
2 yyy T

Iyyy − 1
2 yyy TΩ|| 2 yyy

A second rotation yyy �−→ ŷyy = Syyy served to diagonalize the potential energy form
while preserving the diagonality of the kinetic energy form (yyy T

Iyyy = ŷyy T
I ŷyy). The

elementary logic of the procedure is illustrated in Figure 9.

4. Introduction & management of “gyroscopic” terms. In quest of the most general
linear system (we have ẍ + 2γẋ + ω2

0x = 0 in mind) we might look to the most
general quadratic Lagrangian

L = 1
2 ẋxxT

M ẋxx + ẋxxT
Gxxx − 1

2xxxT
Kxxx

The resulting equations of motion are

M ẍxx + (G − G
T)ẋ̇ẋx + Kxxx = 0

to which, interestingly, the symmetric part of G = S+A makes no contribution
. . . for this reason:

d
dt

(
1
2xxx T

Sxxx
)

= ẋxxT
Gxxx is a gauge term
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Figure 9: The ellipses arise from xxx T
Mxxx = 1 and xxx T

Kxxx = 1, where
M and K are arbitrary real/symmetric/positive-definite matrices,
and would in the n-dimensional case be hyper-ellipsoids. The
simultaneous diagonalization procedure runs
• rotate to the principal axes of the M-ellipse;
• dilate so as to render the M-ellipse spherical;
• rotate to the principal axes of the (now deformed) K-ellipse; the

M-sphere is invariant under that adjustment.
It is evident that the process cannot be continued for the simple
reason that it is (except in special circumstances) possible to make
only one sphere at a time.

Discarding the gauge term, we are left with

L = 1
2 ẋxxT

M ẋxx + ẋxxT
Axxx − 1

2xxxT
Kxxx : A antisymmetric (9)

which gives
M ẍxx + 2A ẋ̇ẋx + Kxxx = 000 (10)
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The new term looks like a damping term, but isn’t. For t-differentiation of the
energy E = 1

2 ẋxxT
M ẋxx + 1

2xxxT
Kxxx gives

Ė =
[
1
2 ẋxxT

M ẍxx + 1
2 ẋxxT

Kxxx
]
+ transpose

=
[
1
2 ẋxxT

{
− 2A ẋ̇ẋx − Kxxx

}
+ 1

2 ẋxxT
Kxxx

]
+ transpose

= 0

from which the ẋxx T
A ẋ̇ẋx-term has disappeared by antisymmetry.

The “simultaneous diagonalization of M, A and K” was just shown to be
generally impossible, and anyway: a diagonalized A would—in consequence of
its antisymmetry—disappear altogether!

I propose to discuss the typical dynamical consequences of the A-term in
the equation of motion (10). By way of preparation, write M = N

T
N, multiply

(N T) –1 = (N –1) T into (10) and obtain

N ẍxx + 2(N –1)T
AN

–1 · N ẋxx + (N –1)T
KN

–1 · Nxxx = 000

which we agree to notate

ÿyy + 2B ẏyy + Ω|| 20yyy = 000 (11)

(the yyy -variables have abandoned their former hats) and which possess the
structure

ÿyy + 2B ẏyy +

⎛
⎜⎜⎝

ω2
10 0 . . . 0
0 ω2

20 . . . 0
...

...
. . .

...
0 0 . . . ω2

n0

⎞
⎟⎟⎠yyy = 000 : B antisymmetric

We have by this point diagonalized what we could, but are left with a system
of equations that cannot be uncoupled. The motion of such a system cannot
be resolved into superimposed normal modes of harmonic vibration. Indeed,
such a system cannot properly be said to possess “normal modes” in the familiar
sense. Nevertheless, and as will emerge: such systems are endowed with natural
frequencies, and do display what might be called abnormal modes of harmonic
motion. I find it convenient to develop these points in reference to a specific

EXAMPLE : Look to ÿyy + 2B ẏyy + Ω|| 20yyy = 000 in the case

B =
(

0 −β
β 0

)
, Ω|| 20 =

(
22 0
0 32

)

I will sketch three distinct approaches to the solution of this pair
of equations, all of which extend straightforwardly to systems with
more than two degrees of freedom.
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First approach: We could simply ask Mathematica to do our work
for us, bringing its DSolve command to the system

ÿ1 − 2βẏ2 + 4y1 = 0
ÿ2 + 2βẏ1 + 9y2 = 0

y1(0) = 1
y2(0) = 0
ẏ1(0) = 0
ẏ2(0) = 1

In the trivial case β = 0 we get

y1(t) = cos 2t

y2(t) = 1
3 sin 3t

which is plotted below:

Figure 10: Motion in the case under study when the
gyroscopic coupling is turned off : β = 0.

In the case β = 1
10 (on which I will concentrate) Mathematica

is no less accommodating: it supplies a result that, when all the
complicated surds have been reduced to numbers, can be rendered

y1(t) = 1.0330 cos(1.9921 t) − 0.0330 cos(3.0119 t)
y2(t) = 0.0818 sin(1.9921 t) + 0.2778 sin(3.0119 t)

}
(12)

and is plotted in Figure 11.

Second approach: Assume yyy to be the real part of ZZZeiωt. Define

F(ω) =
(

4 − ω2 − 1
5 iω

− 1
5 iω 9 − ω2

)

and from det F(ω) = 0 recover precisely the ω-values implicit in (12):

ω1 = ±3.0119
ω2 = ±1.9921

Command Transpose[NullSpace[N[ F(ωk)]]] and get complex
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Figure 11: Figures derived from (12). In the top figure
t runs from 0 to 19.6. In the bottom figure t runs to 120.

vectors

ZZZ1 = XXX1 + iYYY 1 =
(
−0.1179

0

)
+ i

(
0

−0.9930

)

ZZZ2 = XXX2 + iYYY 2 =
(
−0.9969

0

)
+ i

(
0

+0.0789

)
From those construct

ZZZkeiωkt =
[
XXXk cos ωkt − YYY k sinωkt

]︸ ︷︷ ︸ +i
[
XXXk sinωkt + YYY k cos ωkt

]︸ ︷︷ ︸
uuuk(t) vvvk(t)

which in the case at hand supply

uuu1(t) =
(
−0.1179 cos ω1t
+0.9930 sinω1t

)

vvv1(t) =
(
−0.1179 sinω1t
−0.9930 cos ω1t

)

uuu2(t) =
(
−0.9969 cos ω2t
−0.0789 sinω2t

)

vvv2(t) =
(
−0.9969 sinω2t
+0.0789 cos ω2t

)
We verify by calculation that each of those satisfies

ÿyy + 1
5

(
0 −1
1 0

)
ẏyy +

(
22 0
0 32

)
yyy = 000

and expect the general solution to be describable
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yyy(t) = a1uuu1(t) + b1vvv1(t) + a2uuu2(t) + b2vvv2(t)

Realization of the previously-stated initial conditions is found to
entail that we set b1 = b2 = 0 and

a1 = 0.2799
a2 = −1.0362

When this is done we recover precisely the equation (12) that gave
us Figure 11.

The preceding discussion shows that the presence of gyroscopic terms in
the equations of motion serves not to destroy the modal concept, but to make it
richer: the vectors

(a cos ωt + b sinωt)nnn

that describe modal motion in the conventional sense all lie in a 1-space, while
the vectors

a
[
XXX cos ωt − YYY sinωt

]
+ b

[
XXX sinωt + YYY cos ωt

]
trace ellipses in a 2-space. One recovers conventional modality in the limit that
YYY (else XXX) vanishes, which must evidently happen when B → O. At work here
is the circumstance that in the absence of gyroscopic terms the Ansatz gives
rise to vectors ZZZ-vectors that are invariably real to within a numerical complex
factor , whnle in the presence of such terms ZZZ becomes essentially complex.

It has been remarked that if the B in

ÿyy + 2B ẏyy + Ω|| 20yyy = 000 (11)

could be diagonalized it would—by antisymmetry—disappear altogether. In
point of fact it can be made to disappear, but at cost. To that end, introduce
“spinning variables” sss by

yyy = Wsss with W(t) = e−Bt

Then
ẏyy = W(ṡss − Bsss)

ÿyy = W(s̈ss − 2B ṡss + B
2sss)

= W( d
dt − B)sss

= W( d
dt − B)2sss

and (11) becomes

W(s̈ss − 2B ṡss + B
2sss) + 2BW(ṡss − Bsss) + Ω|| 20 Wsss = 000

B and W commute, so the ṡss terms drop away, leaving

Ws̈ss + (Ω|| 20 − B
2)Wsss = 000

Multiplication by W
–1 = W

T yields finally

s̈ss + Ω|| 2sss = 000 (13.1)

where Ω|| 2 is the t-dependent real/symmetric matrix defined

Ω|| 2(t) = e+Bt Ω|| 20 e−Bt − B
2 (13.2)

Note that the motion of Ω|| 20(t) is such that its spectrum remains constant.
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EXAMPLE REVISITED : Look again to ÿyy + 2B ẏyy + Ω|| 20yyy = 000 in the
case

B =
(

0 −β
β 0

)
, Ω|| 20 =

(
22 0
0 32

)
The MatrixExp command supplies

W = e−Bt =
(

cos βt sinβt
− sinβt cos βt

)

whence

Ω|| 2(t) =
(

4 cos2 βt + 9 sin2 βt + β2 −5 cos βt sinβt
−5 cos βt sinβt 9 cos2 βt + 4 sin2 βt + β2

)

which, we note in passing, has eigenvalues

22 + β2, 32 + β2 : all t

The system motion is described therefore by the coupled differential
equations

s̈1 + (4 cos2 βt + 9 sin2 βt + β2)s1 − (5 cos βt sinβt)s2 = 0

s̈2 + (9 cos2 βt + 4 sin2 βt + β2)s2 − (5 cos βt sinβt)s1 = 0

}
(14.1)

which, of course, decouple at β2 = 0 (where the spinning stops and
the sss/yyy distinction disappears) to give back again

ÿ1 + 4y1 = 0
ÿ2 + 9y2 = 0

To translate initial data into conditions of spinning variable we use

sss = W
–1 yyy

ṡss = W
–1 ẏyy + B W

–1 yyy

which in the case of immediate interest (β = 1
10 ) becomes

sss(0) =
(

1
0

)

ṡss(0) =
(

0
1

)
+ 1

10

(
0 −1
1 0

) (
1
0

)
=

(
0
11
10

)
⎫⎪⎪⎬
⎪⎪⎭ (14.2)

We are in position now to use NDSolve to obtain descriptions of
s1(t) and s2(t) as a pair of InterpolatingFunctions, which when
plotted yield Figure 12. If, on the other hand, we multiply W

–1(t)
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Figure 12: Graph of the sss(t) that results at β = 1
10 from (14) as t

runs from 0 to 19.6.

into the yyy(t) of (12)—which produced Figures 11—we obtain

(
s1(t)
s2(t)

)
=

(
cos(t/10) − sin(t/10)
sin(t/10) cos(t/10)

) (
y1(t)
y2(t)

)

which when graphed exactly reproduces the preceding figure. Figures referred to
the rotating sss-frame become much prettier/less chaotic when β � {ω1, ω2}. If,
for example, we set β = 1

100 then the ωk acquire new values {2.9999, 2.0001} ≈
{3, 2}—so also does ṡss(0)—and in place of Figure 12 we obtain Figure 13.

Anyone who has played with an oscilloscope has had fun with the Lissajous
figures

x1(t) = a1 sin(ω1t)
x2(t) = a2 sin(ω2t + δ)

that appear to “lock” when ω1/ω2 is a small rational number, and that appear
to “roll” when one of the signals is not quite in tune. It should be appreciated
that “Lissajous rolling” and “gyro precession” are distinct phenomena, with
distinct causes, though they may on casual inspection look quite similar.
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Figure 13: Graph of the sss(t) that results at β = 1
100 from (14) as

t runs now from 0 to 100. The adjustment requires that we adjust
also the value of ṡss(0) :

ṡss(0) =
(

0
101
100

)

We recover Figure 10 in the limit β → 0.

5. Damping. To describe charge flow in a pair of inductively coupled RLC
circuits (Figure 14) we would write

(
L1 M
M L2

)
q̈qq +

(
R1 0
0 R2

)
q̇qq +

(
C1

–1 0
0 C2

–1

)
qqq = 000

of which we will take

(
2 1
1 3

)
q̈qq +

(
1 0
0 2

)
q̇qq +

(
3 0
0 7

)
qqq = 000 (15)

to provide a representative instance. Proceeding in the now-familiar way to the
simultaneous diagonalization of the inductance and capacitance matrices, we
are led to the construction of a matrix

Q =
(
−0.53891 −0.55640

0.59435 −0.21621

)
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C1 L1 L2 C2

M

R1 R2

Figure 14: Inductively coupled RLC circuits, produced by inserting
resistors into the circuits shown in Figure 3.

with the property that

Q
T

(
2 1
1 3

)
Q =

(
1 0
0 1

)

Q
T

(
3 0
0 7

)
Q =

(
ω2

10 0
0 ω2

20

)

where
ω2

10 = 3.34403

ω2
20 = 1.25597

are recognized to be squares of the roots of

det
[ (

3 0
0 7

)
−

(
2 1
1 3

)
ω2

]
= 0

We are led therefore to introduce new variables yyy (who have again lost their
hats) by

qqq = Qyyy

in terms of which the circuit equations (after multiplication on the left by Q
T)

become

ÿyy + R ẏyy +
(

ω2
10 0
0 ω2

20

)
yyy = 000 (16.1)

where the “resistance matrix”

R = Q
T

(
1 0
0 2

)
Q =

(
0.99693 0.04284
0.04284 0.40307

)
(16.2)

is real/symmetric/positive-definite. In (16) we encounter once again a situation
in which the diagonalization process has run out of steam before complete
decoupling has been accomplished. A theorist, anxious to preserve the relevance
of the “normal mode” concept, might be tempted to introduce “modal damping”
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M

L1 L2

C1 R C2

R1 R2

Figure 15: Circuit redesigned to make it possible to achieve “modal
damping.”

by returning to (16) and by hand setting

R =
(

r1 0
0 r2

)

But that would entail introducing precisely calibrated off-diagonal elements into
the resistance matrix in (15), and to accomplish that one would have to redesign
the circuit (Figure 15), setting

R1 = 0.23374 r1 + 1.76626 r2

R = −0.60150 r1 + 1.60150 r2

R2 = 1.54789 r1 + 1.45211 r2

Equations (16)—into which I now find it useful to introduce an adjustable
constant k, writing

ÿyy + k · R ẏyy +
(

ω2
10 0
0 ω2

20

)
yyy = 000 (17)

—do, however, yield to solution by the now-familiar variety of means. At k = 1
DSolve supplies an expression containing four constants of integration, each
multiplied into an oddly weighted linear combination of terms of the types

e−0.49844 t

{
cos(1.75858 t)
sin(1.75858 t) and e−0.20156 t

{
cos(1.10293 t)
sin(1.10293 t) (18)

that contains four constants of integration. If we retain the initial conditions
familiar from previous examples then NDSolve supplies interpolating functions
that when plotted yield figures like those presented on the next two pages.

If k becomes sufficiently large the oscillatory factors disappear and tyhe
system enters into an overdamped regime. Experiments with DSolve indicate
that for the system at hand oscillations are still present at k = 5.6, but they
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Figure 16: Curve derived from (17) in the case k = 0 (resistences
turned off). The initial conditions are again those that have become
standard in this work (y1(0) = ẏ2(0) = 1, y2(0) = ẏ1(0) = 0) and t
runs from 0 to 35.

Figure 17: Same as above, except that now k = 0.1.
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Figure 18: Same as above, except that now k = 0.3.

Figure 19: Same as above, except that now k = 1.0.

have disappeared by the time resistance has grown to the level indicated by
k = 5.7: yyy(t) is then assembled from terms proportional to

e−5.03875 t, e−1.29343 t, e−1.00934 t, and e−0.63848 t

For a graph of yyy(t) in that case see Figure 20.
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Figure 20: Curve obtained from(17)in the overdamped case k=5.7.

If one looks for solutions of the form ZZZ eiωt then one has first to solve

det(F(ω; k)) = 0

with

F(ω; k) =
(

ω2
10 0
0 ω2

20

)
+ ik · R ω −

(
1 0
0 1

)
ω2

This (in the case k = 1) gives

ω1 = ±1.75858 + 0.49844 i

ω2 = ±1.10293 + 0.20156 i

—in precise agreement with the results reported at (18). The commands
NullSpace[F(ωj)] now supply ZZZj = XXXj + i YYYj with

XXX1 =
(

0.92571
−0.00505

)
YYY 1 =

(
0.37635
0.03743

)

XXX2 =
(
−0.02199
−0.17753

)
YYY 1 =

(
0.00727

−0.98384

)

Interest here attaches not to the digits but to the simple fact that the ZZZj-vectors
are essentially complex ,2 for here as in the gyroscopic case

It is the complexity of the ZZZs that announces the breakdown
of the normal mode concept, the intrusion of abnormal modes.

Recent figures all show extinction of motion, with which we associate
energy loss. Looking now specifically to the energetics: the line of argument
encountered at the top of page 12 serves to establish that if

Mẍxx + 2Gẋxx + Kxxx = 000 and E = 1
2 ẋxx T

Mẋxx + 1
2xxx T

Kxxx

2 We say that a complex vector ZZZ “essentially complex” if it is not possible
to write ZZZ = (complex number) · (real vector), and in the contrary case that it
is “inessentially complex.” In one dimension the distinction does not arise.
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then
Ė = − 1

2 ẋxxT(G + G
T)ẋxx

It was remarked previously that the antisymmetric part of G = S + A does
not contribute to energy dissipation. What we have just established is that the
symmetric part, on the other hand, does: we have

Ė = −ẋxx T
S ẋxx

which in electrical applications reads Ė = −q̇qq T
R q̇qq and is called “I2R loss.”

6. Introduction of inflating coordinates. We have the shift rule

e−Gt
D eGt = (D + G) : D ≡ d

dt I

from which it follows in particular that D
2eGtyyy = eGt

{
ÿyy + 2G ẏyy + G

2yyy
}
. So if

vectors yyy and zzz stand in the relation zzz = eGtyyy then

z̈zz = eGt
{
ÿyy + 2G ẏyy + G

2yyy
}

Adding a term eGt
{
Ω|| 20 yyy−G

2yyy
}

amounts to adding a term
{
eGt Ω|| 20 e−Gtzzz−G

2zzz
}

on the left. We conclude that

ÿyy + 2G ẏyy + Ω|| 20yyy = 000 ⇐⇒ eGt
{
ÿyy + 2G ẏyy + Ω|| 20yyy

}
= 000

which is in turn equivalent to

z̈zz + Ω|| 2(t)zzz = 000 with Ω|| 2(t) = eGt Ω|| 20 e−Gt − G
2 (19)

No use has been made here of the symmetry properties of G: if we understand
G to be antisymmetric we recover (13), from which a gyroscopic term had
been removed. But if G is symmetric then it is a damping term that has been
eliminated from (19).

To see how this works in a concrete case I return to (17). Looking to the
case k = 1

10 , we have G = 1
20R (which has eigenvalues {0.05, 0.02}), command

MatrixExp[Gt] and obtain

eGt =
(

0.99488 0.07139
0.07139 0.00512

)
e0.05 t +

(
0.00512 −0.07139

−0.07139 0.99488

)
e0.02 t

We use DSolve to produce yyy(t) and then construct

zzz(t) = eGtyyy(t)

Figure 21 shows a typical result of such a procedure. In the one-dimensional
theory of damped oscillators it is my experience that inflating coordinates can
be used to good advantage, but in the present context I can’t claim them to be
good for much beyond the production of pretty pictures.
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Figure 21: The red curve depicts the solution yyy(t) of (17) in the
case k = 1

10 (in which connection see again Figure 17) as t ranges
from 30 to 50. The black curve derives from zzz(t) = eGtyyy(t) and
provides a distortedly magnified representation of the same data.

7. Conclusions & prospects. I have stressed that the presence of a “3rd matrix”
in the linear differential equations that describe the oscillations of complex
mechanical/systems brings one into conflict with the elementary fact that one
can (in general) diagonalize not more than two symmetric matrices at once.
This circumstance spells the demise of the familiar “normal mode” concept,
which is replaced by a richer conception: the “abnormal mode.”

I have described several approaches to the solution of the equations that
describe abnormal modes, and shown that problem to be scarcely more difficult
that the problem posed by normal mode systems, even though the motion
executed by abnormal systems is relatively more complicated.

Does the normal/abnormal distinction matter? Hardly at all. For only
rarely does one have physical interest in the specific movement of the component
parts of a multi-component vibrating system: one is most commonly interested
in the spectroscopy of such systems, in the natural frequencies associated with
that motion, and the theoretical determination of those is wholely independent
of the distinction in question.3

Spectroscopic techniques refer to the behavior of stimulated vibrational
systems. It would be interesting—and possibly useful—to inquire therefore
into the response of abnormal systems to stimulation.

3 Here as always, it is the inverse problem that is most interesting: given
a measured spectrum, how much damping, how much gyration should one
introduce into one’s model to account for the data?


